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Abstract

An anharmonic Duffing–Van der Pol oscillator with two external forces is considered. By applying
numerical results, strange attractors are presented and the chaotic behaviour is investigated. The problem
of directing a chaotic state of the system to a periodic orbit is studied. By assuming that the exact model of
the system is not known and that the position is the only state available for measurements, the controller
comprises a linearizing-like feedback and an estimator. Simulations are provided to illustrate the
performance of the controller.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Research in the area of non-linear oscillators of various types has received a great deal of
attention in recent years. Prominent among them is the Duffing–Van der Pol (DVP) oscillator,
described by the equation

.x � mð1� x2Þ ’x þ o2
0x þ lx3 ¼ UðtÞ; ð1Þ

where m; o0; l are constant parameters and UðtÞ is an external force. This non-linear differential
equation is used in physics, engineering, electronics, biology, neurology and many other
disciplines [1–8]. It is therefore one of the most intensively studied systems in non-linear dynamics
[1,7].
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In the presence of an external periodic force (e.g. UðtÞ ¼ U0 cosot) the DVP oscillator shows
hysteresis, multistability, period doubling, intermittent transitions to chaos, local bifurcation and
strange attractor phenomena [5,6].
Less effort has been devoted to the case where the external force has more than one periodic

component. One can mention the work of Yagasaki who studied chaotic motion near homoclinic
manifolds and resonant toris [9], and homoclinic motions and chaos in the quasiperiodically
forced DVP oscillator with single well potential [10].
On the other hand, since the pioneering work of Ott et al. [11] who used small parameter

perturbations to stabilize a saddle fixed or periodic point contained in a chaotic attractor, the
control of chaotic systems has become a challenging problem of intrinsic interdisciplinary interest.
One motivation for such research is their obvious importance in relation to applications. For
example, controlling the chaotic brain wave of the human being ‘‘may be chief property that
makes the brain different from an artificial-intelligence machine’’ [12]. Different types of control
phenomena have been observed in variety of chaotic systems. The occurrence of a particular type
of control may depend on the structure of the underlying dynamical system considered [8,13–16].
In this paper, the dynamics and chaos control of the DVP oscillator (1) subjected to two

periodic external forces are investigated; that is,

UðtÞ ¼ f cosðvt þ aÞ þ g cosðot þ bÞ; ð2Þ

where f ; g; a; b; v and o are constants.
In Section 2 by applying computational methods, bifurcation diagrams, Poincar!e maps and

Lyapunov exponents are presented to observe periodic and chaotic motions. In Section 3, a
linearizing-like control scheme is applied to drive the chaotic state of the DVP oscillator to one of
its periodic orbits. It is assumed that uncertainties in the model are present. That is, the robust
stabilization problem of chaotic signals against model uncertainties is addressed. The paper ends
with conclusion in Section 4.

2. Chaotic state

An interesting question related to the problem of chaos is the way the chaos appears in the
system. In this section, numerical studies have been done with a view to finding the sensitivity and
some sets of parameters which lead to chaotic behaviour. The following bifurcation diagrams
(Figs. 1(a) and (b)) have been drawn showing transition to chaos for m ¼ 0:2; o0 ¼ 1; f ¼ 0:48;
v ¼ 1; o ¼ 3 and a ¼ b ¼ 0:
In Fig. 1(a) the bifurcation diagram shows the amplitude of the oscillation in the Poincar!e

cross-section versus the amplitude of the second external force g for l ¼ 0:8: Periodic,
quasiperiodic and chaotic oscillations are clearly visible in the figure. In fact, for small values
of g ð0ogo1:75Þ the system’s behaviour is fundamentally quasiperiodic. However, a very short
interval of periodicity is located at approximately g ¼ 1:5: When g is increased right above the
value 1.75, the system jumps into a stable regular state characterized by periodic motions of a
relatively long period. As g continues to be increased, these periodic states undergo period-
doubling bifurcations that lead the system into another chaotic state. This latter behaviour ceases
abruptly at g ¼ 4; giving place to periodic motions, yet with relatively short periods as compared
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to the previous case. The scenario so described is repeated once again and the system finally settles
into a period-2 motion.
The bifurcation diagram of Fig. 1(b), where l is varied in the range 0olo1; is contrary to that

of Fig. 1(a). Between the l intervals, all trajectories lead to an invariant torus, where periodic
orbits (3, 6 and 9-periods) are bounded by chaotic intervals until periodic movement occurs.
Indeed, it is noticed that for 0olo0:5; the system displays periodic behaviour (period-3 motion)
which abruptly bifurcates into a period-6 at lE0:375: In the half-right interval, i.e., 0:5plp1; the
pattern of evolution of the system’s dynamics is the same as that of Fig. 1(a). That is, chaotic and
periodic behaviours succeed each other with a period-2 state as the final behaviour of the system.
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Fig. 1. Bifurcation diagram for m ¼ 0:2; o0 ¼ n ¼ 1; o ¼ 3; f ¼ 0:48; a ¼ b ¼ 0; (a) l ¼ 0:8 and (b) g ¼ 6:2:
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It is interesting to note that while the width of the interval of regular behaviour is relatively
increasing with the increase of g (in Fig. 1(a)), it actually diminishes when l is increased.
The second indicator is the largest Lyapunov exponent (denoted Lmax) computed from the

variational equation

d .x � mð1� x2Þ d ’x þ 2mx ’x dx þ o2
0 dx þ 3lx2 dx ¼ 0

obtained by linearizing Eqs. (1)–(2) around solution x: dx; d ’x and d .x are the variations of x; ’x

and, .x respectively. The largest Lyapunov exponent can be defined as

Lmax ¼ lim
t-N

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ d ’x2

p
t

" #
:

The signs of the Lyapunov exponents provide a qualitative picture of a system dynamics. The
criteria are Lmax > 0 (chaotic) and Lmaxp0 (regular motion). Fig. 2 presents the Lyapunov
exponent as a function of the amplitude of the second external force g: It is clear that the system
returns to regular motion when the value of g is presented at a certain interval.
Another mechanism leading to chaotic behaviour due to the effects of the second external force

is the torus breakdown by loss of smoothness illustrated in Poincar!e maps. The torus of Fig. 3(a),
the form of which is approximately a circle, is obtained for g ¼ 0; the corresponding Lyapunov
exponent is Lmax ¼ 0: For g ¼ 3; the shape of this torus begins to deform with the appearance of
three pikes (see Fig. 3(b)). The loss of smoothness is already noticeable although the system
remains non-chaotic. Increasing the amplitude of the second component of the external force to
g ¼ 4 accentuates the torus loss of smoothness by producing a fractal geometric shape, and thus
the chaotic behaviour of the system. This is depicted in Fig. 3(c). Note that for this value of g; the
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Fig. 2. The maximal Lyapunov exponents against g corresponding to the bifurcation diagram of Fig. 1(a).
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Fig. 3. Poincar!e maps; for m ¼ 0:2; o0 ¼ n ¼ 1; o ¼ 3; f ¼ 0:48; a ¼ b ¼ 0; l ¼ 0:8: (a) g ¼ 0; (b) g ¼ 3; (c) g ¼ 4;
(d) g ¼ 6:2; (e) zoom of ðdÞ:
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maximal Lyapunov exponent is found to be Lmax ¼ 0:097: At last, when g ¼ 6:2 ðLmax ¼ 0:19Þ; a nice
strange chaotic attractor is shown in Fig. 3(d). From Fig. 3(e), one can easily see that this attractor
consists to a number of parallel curves. Such a mechanism of transition to chaos via breaking of tori
and formation of attracting homoclinic structure has also been observed in Refs. [4,8].

3. Chaos control

As derived in Section 2, the DVP oscillator presents very complicated dynamics such as
coexistence of chaotic attractors with periodic orbit. In practical applications, it is desirable to
induce regular dynamics in DVP oscillator to avoid fracture and degradation of the mechanism
parts. Persistent external perturbations represented by the time-functionalities in Eq. (2) lead to
errors and lag position tracking. To avoid these undesirable dynamical effects, it is necessary to
introduce some control actions in the system. However, the practical chaotic systems may contain
many types of uncertainties. These uncertainties may cause chaotic perturbations to originally
regular behaviour, or induce additional chaos in originally chaotic but known behaviour,
generating unknown chaotic motion. In this case, it would be desirable to have a feedback scheme
to achieve control in spite of the system’s uncertainties.
The purpose of this section, is essentially to develop a robust input–output linearization

feedback scheme for controlling a chaotic second order system such as DVP equation (1)–(2) to an
appropriate reference signal. It is recalled that DVP’s equation (1)–(2) describes a specific non-
linear self-excited circuit or a pendulum moving in a non-linear viscous medium and is in
controlled form given by

.x � mð1� x2Þ ’x þ o2
0x þ lx3 ¼ f cosðvt þ aÞ þ g cosðot þ bÞ þ u: ð3Þ

The control u is added in order to guide the chaotic dynamics to meet the specific requirements. It
is assumed that uncertainties such as modelling errors, noisy measurements, parameter variations,
and time delays are present in the model. The authors are interested in driving the state x to an
appropriate defined reference signal xd : This issue is widely known as the tracking problem in the
control community.
The control objective is to solve the following tracking problem: for any bounded reference

trajectory xd whose derivatives ’xd and .xd are bounded and piecewise continuous on [0,N), design
a feedback controller uðt;x; ’xÞ that forces the output y ¼ x to track xd exponentially as t-T for
any initial time instant t0X0 and initial conditions ðxð0Þ; ’xð0ÞÞAR2; despite modelling errors,
parameter variations and time delays in the actuators.

3.1. Feedback stabilization under uncertain vector field

Here the detailed design procedure of the feedback control law u is described with detailed
explanations. The main idea behind the proposal is, departing from the uncertain system, to construct
an extended non-linear system which should be dynamically equivalent to the canonical representation.
In this way, the system’s uncertainties are lumped into a non-linear function, which is rewritten into the
extended non-linear system as a state variable. After, an observer can be constructed to get an
estimated value of the lumping non-linear function via the augmented state variable.
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First, some basic notions about exponential stability are recalled.
Consider a non-linear system ’w ¼ hðwÞ; with wARn and h being locally Lipschitz in w: Assume

that hð0Þ ¼ 0: The system is said to be globally exponentially stable (for short, GES) at the
equilibrium w ¼ 0 if there exists a Lyapunov function V and three positive constants k1; k2 and k3
such that

k1jjwjj2pV ðwÞpk2jjwjj2;

and

’VðwÞ ¼
@V

@w
hðwÞp� k3VðwÞ:

In this way, there exist two positive constants g and r such that the solutions wðtÞ satisfy

jjwðtÞjjpge�rðt�t0Þ; 8tXt0X0: ð4Þ

Now let x ¼ x1 and ’x ¼ x2 be defined. In this way, dynamics (3) become

’x1 ¼ x2;

’x2 ¼ Yðx1; x2; tÞ þ u;

(
ð5Þ

where

Yðx1; x2; tÞ ¼ mð1� x21Þx2 � o2
0x1 � lx31 þ f cosðvt þ aÞ þ g cosðot þ bÞ

is a smooth non-linear function. In this paper, it is shown that the property of GES is achievable
for the DVP system and, moreover, r in Eq. (4) can be assigned arbitrarily with the aid of a non-
linear observer-based output feedback controller.
In order to design a control law satisfying the control objective stated above, assume the

following.

Assumption 1. The output (measurement) of the system is y ¼ x1:

Assumption 2. Yðx1;x2; tÞ is unknown function.

Assumption 1 is realistic because in most cases only the position is available for feedback.
Although the time derivative of the position can be obtained by means of encoders, the procedure
is very sensitive to noisy measurements. Concerning Assumption 2, it is claimed that it is a general
and practical situation because the term Yð:Þ involves the uncertainties in the system. The sources
of such uncertainties could be parameter mismatching, unknown initial conditions and time
delays in the actuators. Hence, the non-linear functionYðx1; x2; tÞ is uncertain and it is clear that it
cannot be directly used in a linearizing-type feedback.
The idea of dealing with the uncertain term Yðx1;x2; tÞ is to lump it into a new state n: Then,

system (5) can be rewritten as the following (extended dynamically equivalent) system:

’x1 ¼ x2;

’x2 ¼ nþ u;

’n ¼ Xðx1;x2; n; u; tÞ;

8><
>: ð6Þ
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where

Xðx1; x2; n; u; tÞ ¼ x2@1Yðx1; x2; tÞ þ ðnþ uÞ@2Yðx1;x2; tÞ þ @tYðx1;x2; tÞ;

with @kYðx1; x2; tÞ ¼ @Yðx1;x2; tÞ=@xk; k ¼ 1; 2 and @tYðx1;x2; tÞ ¼ @Yðx1; x2; tÞ=@t:
Or in a matrix equation form as

’X ¼ AXþ Bðnþ uÞ;

’n ¼ XðX ; n; u; tÞ;

(
ð7Þ

where X ¼ ðx1; x2Þ
T;

A ¼
0 1

0 0

" #
and B ¼

0

1

" #
:

System (6) has the following properties:

1. Under the vector field defined in system (6), the set M ¼ fðx1;x2; nÞAR3 : cðx1;x2; n; tÞ ¼
n�Yðx1;x2; tÞg is an invariant three-dimensional manifold. In order to prove this property, it
suffices to show that dcðx1; x2; n; tÞ=dt ¼ 0 for all tX0 or equivalently x2@1Cðx1; x2; n; tÞ þ ðnþ
uÞ@2Cðx1;x2; n; tÞ þ ’n@nCðx1;x2; n; tÞ þ @tcðx1; x2; n; tÞ ¼ 0: This is automatically satisfied be-
cause @nCðx1;x2; n; tÞ ¼ 1 and ’n ¼ �x2@1Cðx1;x2; n; tÞ � ðnþ uÞ@2Cðx1;x2; n; tÞ � @tcðx1; x2; n; tÞ:

2. For all uAR; system (6) has the same solution as system (5) module p : ðx1; x2; nÞ-ðx1; x2Þ; if
nð0Þ ¼ Yðx1ð0Þ;x2ð0Þ; 0Þ: That is if Cðx1ð0Þ; x2ð0Þ; nð0Þ; 0Þ is a solution of the system (6), then
p 
Cðx1ð0Þ;x2ð0Þ; nð0Þ; 0Þ is a solution of the system (5). To prove this property let the last
equation of Eq. (6) be integrated to get (considering the invariance of Cðx1; x2; n; tÞ given by the
first property) nðtÞ ¼ Yðx1;x2; tÞ þ c; where c is an integration constant. The condition
Cðx1;x2; n; tÞ ¼ 0 implies that nð0Þ ¼ Yðx1ð0Þ; x2ð0Þ; 0Þ and hence c ¼ 0: Then, when nðtÞ is back-
substituted in the second equation of Eq. (6), the solution of system (5) is obtained.
Consequently, p 
Ctðx1ð0Þ;x2ð0Þ; nð0Þ; 0Þ ¼ Ctðx1ð0Þ; x2ð0Þ; 0Þ where Ctðx1ð0Þ; x2ð0Þ; nð0Þ; 0Þ ¼
Ctðx1ð0Þ;x2ð0Þ; 0Þ is the solution of system (6) with initial conditions ðx1ð0Þ;x2ð0Þ; Zð0ÞÞ and
Ctðx1ð0Þ;x2ð0Þ; 0Þ denotes the solution of system (5) with initial conditions ðx1ð0Þ; x2ð0ÞÞ:

3. The transformed system (6) is a fully linearizable non-linear system. In addition, system (6) is in
a cascade form. This means that when action is taken to achieve limX-Xd ; the part
XðX ; n; u; tÞ-XðXd ; n; u; tÞ-Xd asymptotically for the so-called cascade character [16].

For any positive real number y; define

Dy ¼
y�1 0

0 y�2

" #
;

8KAR1�2; there exists *KAR1�2 such that

B *K ¼ yD�1
y BKDy;

and *K is given by the following formula:

*K ¼ yBTD�1
y BKDy: ð8Þ
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The controller is designed as follows

u ¼ ’x2dðtÞ � nþ *Ke; ð9Þ

where *K is defined as in Eq. (8) and K is such that ðA þ BKÞ has all its eigenvalues with negative
real parts and

e ¼
e1

e2

" #
¼

x1 � x1d

x2 � x2d

" #
;

is the tracking error. Substituting Eq. (9) into Eq. (7) and noticing that yD�1
y ADy ¼ A; it follows

that the tracking error-dynamics e satisfies

’e ¼ yD�1
y ðA þ BKÞDye;

’Z ¼ Gðe; Z; u; tÞ;

(
ð10Þ

where Z ¼ n� nd and Gð:Þ ¼ Xðx1;x2; n; u; tÞ � Xðx1d ; x2d ; n; u; tÞ:
The desired stability properties of the closed-loop system are summarized in the following

result.

Theorem 1. Consider the DVP equation (6) in closed loop with the control law (9). The closed-loop
system (10) is GES at the origin, i.e., the solutions ðeðtÞ; nðtÞÞ satisfy the property (4).

Proof. Define the Lyapunov function as

V ðeÞ ¼ eTDySDye; ð11Þ

where S is the symmetric positive definite matrix, solution of the matrix equation

ðA þ BKÞTSþ SðA þ BKÞ ¼ �IR2 ;

with IR2 the identity matrix of dimension 2.
Its time derivative along the trajectories of system (10) satisfies

’VðeÞ ¼ �yjjDyejj2: ð12Þ

Remark that

lminðSÞjjDyejj
2pV ðeÞplmaxðSÞjjDyejj

2;

where lminðSÞ and lmaxðSÞ are the minimum and the maximum eigenvalues of the matrix S:Hence,

’VðeÞp
�y

lmaxðSÞ
V ðeÞ:

Then one has

V ðeÞpV ð0Þ exp
�yt

lmaxðSÞ


 �
;
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which implies that

jjDyejjp
V ðeÞ

lminðSÞ

� 1=2
¼

V ð0Þ
lminðSÞ

� 1=2
exp

�yt

2lmaxðSÞ


 �

p
lmaxðSÞ
lminðSÞ

� 1=2
exp

�yt

2lmaxðSÞ


 �

Taking into account that

y�2jjejjpjjDyejjpy�1jjejj;

one has

jjeðtÞjjp
lmaxðSÞ
lminðSÞ

� 1=2
yjjeð0Þjj exp

�yt

2lmaxðSÞ


 �
-0; ð13Þ

which implies that for some T > 0

lim
t-T

xiðtÞ ¼ xidðtÞ; i ¼ 1; 2:

Convergence of Z to zero (or n to nd) follows from the fact that the closed-loop system is in
cascade form [16]. The control dynamics is given by ’u ¼ .x2d � Xðx1;x2; n; u; tÞ þ *K’e: Since xiðtÞ;
i ¼ 1; 2 belong to some chaotic attractor, then Yðx1;x2; tÞ and its derivatives @Yðx1; x2; tÞ=@xk;
k ¼ 1; 2; are bounded. This means that Xðx1;x2; n; u; tÞ is a smooth and bounded function. Hence,
’u is also a smooth and bounded function because x1d ; ’x1d and .x1d are bounded. In addition, since
n ¼ Yðx1;x2Þ; n is bounded. Then since Z ¼ n� nd ; Z is bounded. Finally, since eðtÞ expontentially
converges to zero, ZðtÞ also converges to zero and this achieves the proof. &

The y-parametrization of the feedback control law (9) provides a simple tuning procedure. In
fact, since jjeðtÞjjpg expf�ðyt=2lmaxðSÞÞg; 8tXT ; the larger the value of y; the faster the
convergence of the error ei ¼ xi � xid ; i ¼ 1; 2:
It will now be proved that the convergence of eðtÞ to the origin takes place at a finite time T :

One way to compute the control time T is to follow the time trajectory of system (13). In this case,
the control objective is achieved when the error eðtÞ is less than a precision, i.e., it obeys the
following condition:

jeðtÞjph; tXT ; ð14Þ

where h is the control precision. From Eq. (13), a simple algebraic calculations yields

T ¼
2lmaxðSÞ

y
ln

yjje0jj
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðSÞ
lminðSÞ

s
; ð15Þ

where e0 ¼ eð0Þ is the initial state of eðtÞ: One can notice that T increases logarithmically with the
initial state norm jje0jj; but decreases with y:
From Eq. (9), it is known that the control law is not physically realizable because it requires the

measurements of the states xi; i ¼ 1; 2 and the uncertain term Yð:Þ: So a special way must be to
estimate Yð:Þ and xi; i ¼ 1; 2 based on the available signal y ¼ x1 to make the feedback control
law (9) physically realizable. By using the results reported in Ref. [14], an observer can be
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constructed to get an estimated value of the lumping non-linear function via the augmented state
variable. Based on extended state observer, the following high-gain estimator can be obtained:

’#x1 ¼ #x2 � yE1ð #x1 � x1Þ;
’#x2 ¼ #nþ u � y2E2ð #x1 � x1Þ;
’#n ¼ �y3E3ð #x1 � x1Þ;

8><
>: ð16Þ

where ð #x1; #x2; #nÞ are estimated values of ðx1; x2; nÞ; respectively; and E1;E2 and E3 are estimation
constants which are chosen in such a way that the polynomial s3 þ E1s

2 þ E2s þ E3 ¼ 0 has all its
roots in the open half-hand complex.
Combining systems (6) and (16), the dynamics of the estimation error *ei ¼ y2�i #xi � xi; i ¼ 0; 1

and *e3 ¼ #n� n can be written as follows:

’*e ¼ yD*eþ ½0; 0;Xðx1; x2; n; u; tÞT; ð17Þ

where *e ¼ ð*e1; *e2; *e3Þ
T and DAR3�3 is the companion matrix given by

D ¼

�E1 1 0

�E2 0 1

�E3 0 0

2
64

3
75:

Since the trajectories xiðtÞ; i ¼ 1; 2 are contained in a chaotic attractor, hence, Xðx1;x2; n; u; tÞ is
bounded. Consequently, for any sufficiently large value of the high-gain parameter y; *e-0 as
t-N; which implies that ð #x1; #x2; #nÞ-ðx1; x2; nÞ:
Thus, the following output-feedback control law is chosen, derived from Eq. (9)

u ¼ ’x2dðtÞ � #v þ *K#e: ð18Þ

The authors are now ready to state the second result on the global output-feedback control of the
DVP equation (6).

Theorem 2. Consider the DVP equation (6) in closed loop with the observer-based output-feedback
control law (16), (18). The closed-loop system is GES at the origin, i.e., the solutions ðeðtÞÞ satisfy

property (4) and the control time becomes

T ¼
2lmaxðSÞ

y
ln
yjj#e0jj

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðSÞ
lminðSÞ

s
; ð19Þ

where #e0 ¼ #eð0Þ is the initial state of #eðtÞ:

Proof. Since the estimation error *e is globally exponentially stable at zero one has that #xi-xi;
i ¼ 1; 2 and #n-n: As a consequence, the feedback control law (18) tends to the linearizing
feedback control law given by Eq. (9). Then, control actions counteract the non-linear
uncertainties and induce a linear behaviour. &

Notice that the linearizing control law (18) only uses the estimation of the uncertain term
Yðx1;x2; tÞ (by means #n) and #xi; i ¼ 1; 2: And the dynamical estimator (16) only uses the
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measurable state y ¼ x1: So the feedback control law (18) neglects the system uncertainties and is
more physically realizable than (9).
Note that since Yðx1;x2; tÞ is uncertain, the function Xðx1;x2; n; u; tÞ is correspondingly

unknown. Thus, such a term was not used in the construction of the observer (16). This feature
yields a low-order parametrization (only a tuning parameter is required) to the dynamic
compensator of the adaptive strategy. Note also that the order of the proposed controller does not
increase with the number of parameters because it does not require information about system
parameters. This is an advantage with respect to previous control schemes.
Feedback control based on high-gain observers can induce undesirable dynamics effects such as

the so-called peaking phenomenon [17]. This phenomenon leads to closed-loop instabilities which
are represented by time-finite escapes and large overshooting. To diminish the effect of these
instabilities, the control law (18) can be modified by means of [18]

u ¼ Satf ’x2dðtÞ � #nþ *K#eg; ð20Þ

where

Satf:g

¼ Umax; if u > Umax;

¼ ’x2dðtÞ � #nþ *K#e; if � UmaxpupUmax;

¼ �Umax; if uo� Umax:

8><
>:

3.2. Simulation results

Computer simulation is used to verify the performance of the proposed controller. Consider
system (3) with the initial condition ðx1ð0Þ;x2ð0ÞÞ ¼ ð0:5; 0Þ and the observer (16) with
ð #x1ð0Þ; #x2ð0Þ; #nð0ÞÞ ¼ ð0:6; 0; 7:1Þ: Without the control u; the DVP oscillator is known to generate
a chaotic phenomenon when the system parameters are set at values m ¼ 0:2; o0 ¼ 1; f ¼ 0:48;
v ¼ 1; o ¼ 3; g ¼ 6:2 and l ¼ 0:8 (see Fig. 3(d)). The output reference state is set as yd ¼ x1d ðtÞ ¼
sinot: Hence, x2dðtÞ ¼ o cosot: The control gains were chosen as K1 ¼ �1 and K2 ¼ �2; such
that ðA þ BKÞ has all its roots located at �1: The values of the estimator parameter were chosen
as E1 ¼ 3; E2 ¼ 3 and E3 ¼ 1: Then the eigenvalues of the polynomial s3 þ E1s

2 þ E2s þ E3 ¼ 0
are located at �1: Controller (18) is activated at t ¼ 20 s:
Fig. 4(a) shows the time needed to achieve tracking as a function of y for h ¼ 10�4; while

Fig. 4(b) presents the control time as a function of jj#eð0Þjj for h ¼ 10�4 and y ¼ 20: Fig. 5 shows
the position x1 and the velocity x2 time evolutions before and after the controller is activated. The
free parameter y was taken as y ¼ 20: The figures show that the linearizing-like control proposed
in this section can successfully bring the state to the reference ðx1dðtÞ;x2dðtÞÞ in about 1 s: Note
that when the control is turned, the velocity has a sharp peak. This is due to the fact that the
control command is acting only on the state x2 and the feedback scheme is based on high-gain
feedback, which can induce undesirable dynamics effect such as the peaking phenomenon. The
effect of the sharp peak in the output can be diminished by means of a saturation function of the
feedback controller. When Umax ¼ 15 was arbitrarily chosen, the performance of the satured
version of the controller is presented in Fig. 6.
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Fig. 4. Control time for h ¼ 10�4: (a) as a function y; (b) as a function of the initial state norm jj#e0jj when y ¼ 20:
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Fig. 5. Time response of DVP’s equation: (a) x1 component (—) together with its desired value (- - -); (b) ’x2 component

(—) together with its desired value (- - -) when y ¼ 20:
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Fig. 6. Performance of the saturated version of the control input, y ¼ 20: (a) x1 component (—) together with its

desired value (- - -); (b) ’x2 component (—) together with its desired value (- - -).

F.M. Moukam Kakmeni et al. / Journal of Sound and Vibration 277 (2004) 783–799 797



To further verify the effectiveness of the proposed feedback strategy, the robust output
feedback controller (20) is simulated with different values of the parameter y: Fig. 7 shows the
tracking error e1 ¼ x1 � x1d for three different values of y: As expected, the larger the value of y;
the faster the convergence.

4. Conclusion

The periodic and chaotic motions of the non-autonomous DVP system with two external
periodic forces are obtained by numerical methods such as bifurcation diagram, Lyapunov
exponent and Poincar!e map. Many chaotic phenomena have been displayed in bifurcation
diagrams. More information on the behaviour of the periodic and chaotic motions can be found
in Poincar!e maps.
A control scheme for chaos suppression has been presented. The main idea is to lump the

uncertainties in a non-linear function which can be interpreted as an augmented state in a
dynamically equivalent DVP oscillator. A state estimator provides an estimated value of the
augmented state and, consequently, of the uncertainties. Thus, the controller comprises two parts:
a state observer and a linearizing-like control law. The feedback controller was given in terms of a
high-gain parameter, which can be easily turned to trade off between stability (convergence). In
later work, it is hoped that the method will be useful for developing a practical synchronized
chaotic DVP oscillator.
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Fig. 7. Tracking error e1 ¼ x1 � x1d for three different values of the high-gain parameter y:
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